
Knowledgebase > Functions of Kahootz > Databases > Calculated Columns in a database

Calculated Columns in a database
Peter Jackson - 2024-04-02 - Databases

Calculations

You can set a text, long text, formatted text, number or date column in a Kahootz Database to be a calculated
column instead of a user having to enter values directly.
This means that the values in that column are calculated based on other values in the entry each time it is saved.
For example, adding up a set of other number columns or combining some text and displaying that value within
the calculated column for you.

Your calculation can be a simple expression, such as adding or multiplying values, or it can contain code and
logic.
You can also use a range of operators and functions within your calculation to obtain the required data.
More information about the operators and functions you can use is given below.

If you add or update a calculation on a column, the existing database entries will be updated in the background.
For a Database with many rows, this can take some time; calculations will also be updated when you add or
change an entry.

A calculation column is added after initially creating a database by following these simple steps
below.

1. Open the Database you want to add a calculated column, and under the "Actions" section, select "manage
database" link.
2. Select the column and at the bottom of the page, under "other options" tick the checkbox for calculated as
shown below.

3. Add an expression or code and click save; see the screenshot below.

* This would allow the following Database below to add all the hours from each weekday, totalling them into the
last column.

Kahootz Tip: Adding val ({{column}}) ignores any blank columns within your Database.

Please see below for more details on formats, expressions & coding.

Basic Format

You can use the value of other columns in your calculation by putting the column name between {{ and }}.
A list of the available column names will be shown on the add / modify column page when you're adding
calculations, and you can click on them to insert them into the calculation.

You can use round brackets () to make sure your calculation is evaluated in the order you expect - so (2 + 4) / 2

https://help.kahootz.com/en-GB
https://help.kahootz.com/en-GB/kb
https://help.kahootz.com/en-GB/kb/functions-of-kahootz
https://help.kahootz.com/en-GB/kb/databases
https://help.kahootz.com/en-GB/kb/articles/calculated-columns-in-a-database
https://help.kahootz.com/en-GB/kb/databases

will do the addition first, then the division - giving 3.
Normal mathematical precedence will apply without the brackets, 2 + 4 / 2, so it will do 4 / 2 first, then + 2,
giving 4.

You can search and sort on calculated columns.

You can use one calculated column in another calculation. They are evaluated in column order, so if you want to
use one calculation in another, ensure the first one is higher up the column order.

If there is an error from your code due to particular inputs for a row, the column will be set to blank.

Simple Expressions

Examples

Adding two number columns together: {{days on activity 1}} + {{days on activity 2}}

Multiplying two number columns together: {{cost per hour}} * {{total hours}}

Showing one number column as a percentage of another: {{hours spent on activity}} / {{total hours}} *
100

Showing that percentage as a whole number (no decimal places):
int({{hours spent on activity}} / {{total hours}} * 100)

Work out the number of days between two dates: daysBetween({{start date}}, {{end date}})

Numeric operators

You can use the following operators to combine numbers:

Addition number1 + number2

Example: To calculate the total
number of days spent on activity1 and
activity2:
{{days on activity1}} +
{{days on activity2}}

Subtraction number1 - number2
Example: To calculate the cost after
discount:
{{Original cost}} -
{{discount}}

Multiplication number1 * number2
Example: To calculate the total cost of
a number of items:
{{Cost per item}} * {{number
of items}}

Division number1 / number2
Example: To calculate the cost per
hour:
{{Total cost}} / {{number of
hours}}

Integer division number1 \ number2
How many times one number can be
divided by another in whole numbers,
ignoring the remainder.
eg:5 / 2 = 2.5 but 5 \ 2 = 2

Division-remainder number1 mod number2
The remainder after dividing one
number by another.
eg: 5 mod 2 = 1 (2*2=4, with 1
remaining)

Blank column/value val ({{column}})

In all these operators, if a numeric
column/value is blank it'll be treated
as an error, to treat empty columns as
0.
Use this expression - please refer to
the example/screenshot above.

Number Functions

You can use the following functions to manipulate numbers:

Absolute value abs(number)
The absolute value of a number is the
number without a sign, eg: abs(2)
= 2 and abs(-2) = 2

Rounding round(number)

Gives the closest whole number,
rounding up or down as nearest.
eg: round(1.1) = 1 and
round(1.9) = 2
Halves will be rounded to the nearest
even number to avoid bias
eg: round(1.5) = 2 and
round(2.5) = 2 and round(3.5)
= 4

Rounding up ceiling(number)
Gives the closest whole number,
always rounding up.
eg: ceiling(1.1) = 2 and
ceiling(1.9) = 2

Rounding down int(number)
Gives the closest whole number,
always rounding down.
eg: int(1.1) = 1 and int(1.9) =
1

Maximum max(number1, number2)
Return the maximum of number1 and
number2. Only handles two numbers,
not more.

Minimum min(number1, number2)
Return the minimum of number1 and
number2. Only handles two numbers,
not more.

Text Operator

Joining text test1 & text2

Note that this does not use + which is
for adding numbers. You will also need
to put in spaces explicitly where
wanted.
eg: {{first name}} & " " &
{{surname}}

Text Functions

Comparing text compare(text1, text2)
compareNoCase(text1, text2)

Performs a case-sensitive or insensitive
comparison of two text columns.
Return a negative number if text1 is less
than text2; returns 0 if text1 is equal to
text2; returns a positive number if text1 is
greater than text2.

Find position find(text_to_find, text)
findNoCase(text_to_find, text)

Finds the first occurrence of a text_to_find
in text. find is case sensitive, findNoCase is
not.
Returns the position of text_to_find in text;
or 0, if text_to_find is not in text

Insert at position insert(text_to_insert, text, position)

Return text with text_to_insert inserted into
text after character position. If position=0,
it prefixes text_to_insert to text.
eg:insert(" My ","Hello Friend",5)
returns "Hello My Friend"

Remove from position removeChars(text, start_position, num_chars)
Return a text with num_chars removed
starting at position start_position.
eg:removeChars("Hello Friend",5,7)
returns "Hello"

Convert to lower case lcase(text) Return text converted to lower case.
Convert to upper case ucase(text) Return text converted to upper case.

Reverse reverse(text)
Return text in reverse order.
eg: reverse("kahootz") returns
"ztoohak"

Length of text len(text)
Return the length - how many characters -
are in text. Includes spaces and other
punctuation.

Characters from left left(text, num_chars)
Return the leftmost num_chars characters of
text. Counting includes spaces and other
punctuation.

Characters from right right(text, num_chars)
Return the rightmost num_chars characters
of text. Counting includes spaces and other
punctuation.

Characters from position mid(text, start_position, num_chars)
Return num_chars of characters from text
starting at position start_position.eg:
mid("kahootz",3,4) returns "hoot"

Find and replace replace(text, remove, insert [, scope])
replaceNoCase(text, remove, insert [, scope])

Return text with occurrences of
remove replaced by insert. If the scope is
"1" then just the first occurrence is
replaced.
If the scope is "ALL" then all occurrences
are replaced.
(Versions using Regular Expressions for
very advanced use are available - ask
support!)

Substring until spanExcluding(text, characters_to_exclude)

Return characters from text, from the
beginning until the first character in
characters_to_exclude. The search is case
sensitive, so if you want to stop at either A
or a, then put both in characters_to_exclude.
eg:
spanExcluding("kahootz.doc",".,/")
returns "kahootz"

Substring until not spanIncluding(text, characters_to_include)

Return characters from text, from the
beginning until the first character that is
NOT in characters_to_include. The search is
case sensitive, so if you want to include both
A and a, then put both in
characters_to_include.
eg:
spanIncluding("aardvark","aeiou")
returns "aa"

Trim spaces trim(text) Return text with any leading and trailing
spaces removed.

Trim leading spaces ltrim(text) Return text with any spaces at the
beginning removed.

Trim trailing spaces rtrim(text) Return text with any spaces at the end
removed.

Convert to number val(text)

Return text converted to a number. Handles
decimal places. Text that can't be returned
to a number will cause an error, and thus a
blank calculated column (but see conditional
operator 'isNumeric() in the code section
below)

Dates and Times

Date values in the following functions can either be taken from columns (of date, date and time, month and year,
entry creation date / date-time or entry modify date / date-time types) or entered as explicit dates in the format
yyyymmdd - eg 20170401 is 1st April 2017

Time values in the following functions can either be taken from columns (of date and time, time, entry creation
date-time or entry modify date-time types) or entered as explicit times in the format hhmmss

To show a calculated value in a 'date' column the result must be a valid date, but you can use the other result
formats in text or number columns.

Date Functions - returning a number

Day of Week dayOfWeek(date)
Return a number for the
day of the week of date in
the range 1 (Sunday) to 7
(Saturday)

Day Of Year dayOfYear(date)
Return a number of the day
of the year, in the range 1
(1st Jan) - 365 (31st Dec -
or 366 in leap year)

Days in Month daysInMonth(date)
Returns the number of days
in the specified month (ie:
28, 29, 30 or 31)

Days In Year daysInYear(date)
Return the number of days
in the specified year (ie:
365 or 366 for leap years)

Parts of a Date / Time

year(date)
month(date)
day(date)
hour(time)
minute(time)

Return a number for the
appropriate part of the
specified date/time. Year is
returned in four figures
(2017); Month as 1-12; Day
as 1-31; Hour in 24-hour
notation as 0-23; Minute as
0-59

Days after daysAfter(date1, date2)

Return the number of days
that date2 is after date1. If
date2 is before date1, a
negative number is
returned.
If either is not a valid date,
then empty text is returned.

Days between daysBetween(date1, date2)

Return the number of days
between date1 and date2. It
doesn't matter which date
is earlier, and will always
return a positive number. If
either is not a valid date,
then empty text is returned.

Date / Time Difference dateDiff(datepart, date1, date2)

Return the number of
"units" by which date1 is
less than date2. datepart
should be one of the
following strings
"yyyy": Years"q": Quarters
(any 3 month period)"m":
Months"d": Days"ww":
Weeks"h": Hours"n":
MinutesIf date2 is before
date1, a negative number is
returned. If either is not a
valid date, then empty text
is returned.

Date / Time Comparison dateCompare(date1, date2)

Return -1 if date1 is earlier
than date2; Return 0 if
date1 is the same as date2;
Return 1 if date1 is later
than date2; Accurate to the
second if used with date-
times or times.

Current Date now ()

Uses the date the entry was
last saved or updated of
which can be used in
various calculations, see
below.

For example, you have a database using a "date" column and you want to return the total number of days the
entries have been open/outstanding.
You can use this function to show the elapsed days between the created date and today's date by adding "now ()"
to the calculation, as shown below.

Kahootz Tip: The example above will not update automatically, therefore, when you view
the database the next day - the values will not have changed.
The calculation for "current date" uses the date of when the calculation was last saved/updated -
(please remember this if you're going to use this value)

Date Functions - returning a date

Add to / Subtract from a date dateAdd(datepart, number, date)

Return a new date by adding the
specified number of units to
date. datepart should be one of the
following strings
"yyyy": Years"q": Quarters"m":
Months"d": Days"w": Weekdays
(Mon-Fri, skipping Sat and Sun.
Simple addition, not aware of
public holidays etc)"ww":
Weeks"h": Hours"n": MinutesIf
number is positive you'll get dates
after date, ie: forwards in time.
To go backwards in time use a
negative value for number.

Create Date createDate(year, month, day)
Create a date from three numbers,
eg: CreateDate(2017,2,14)
represents 14th Feb 2017

Create Date - Time createDateTime(year, month, day, hour, minute, second)

Create a date-time from six
numbers, eg:
CreateDateTime(2017,2,14,15,5,17)
represents 14th Feb 2017 15:05:17
- just after 3pm

Comma-Separated Lists

ListFirst ListFirst({{column}}, delimiter)

Returns the first element in a list: This function
will return the first element in a list delimited
by the character specified in the expression.
For example: {{ column }} is a,b,c,d,e,f using
the expression ListFirst({{column}}, ',') will
return a

ListLast ListLast({{column}}, delimiter)

Returns the last element in a list: This function
will return the last element in a list delimited by
the character specified in the expression.
For example: {{ column }} is a,b,c,d,e,f using
the expression ListLast({{column}}, ',') will
return f

ListRest ListRest({{column}}, delimiter)

Returns all but the first element from a list: This
function will return the list without the first
element in the list as delimited by the character
specified in the expression.
For example: {{ column }} is a,b,c,d,e,f using
the expression ListRest({{column}}, ',') will
return b,c,d,e,f

ListGetAt ListGetAt({{column}}, pos, delimiter)

Returns the element in the specified position
from a list: This function will return a single
element from the delimited list at a position
specified in the expression.
For example: {{ column }} is a/b/c/d/e/f using
the expression ListGetAt({{column}}, 3, '/')
will return c

ListFind ListFind({{column}}, value, delimiter)

Returns the index of the list that is matched by
the value supplied. If no match is found, 0 will
be returned. For example {{ column }} is
Orange,Apple,Banana using the expression
ListFind({{ column }}, 'Banana', ',') will return
3. As ListFind is case sensitive if the expression
were ListFind({{ column }}, 'banana', ','), the
value returned would be 0.

ListFindNoCase
If you are unsure of the case of the value use:
ListFindNoCase({{column}}, value, delimiter
)

Returns the index of the list that is matched by
the value supplied whilst ignoring the case of
the value and column. If no match is found, 0
will be returned.
For example {{ column }} is
oRaNGe,aPPLe,BaNaNa using the expression
ListFind({{ column }}, 'banana', ',') will return
3

ListDeleteAt ListDeleteAt({{column}}, position, delimiter)

Returns the list after removing the element
specified with the position value.
For example: {{ column }} is
hop,skip,run,jump, using the expression
ListDeleteAt({{column}}, 3, ',')will
returnhop,skip,jump`

ListAppend ListAppend({{column}}, value, delimiter)

Returns a list with a new value added to the end
of the list.
For example: {{column}} is
Hola/Bonjour/Salve, using the expression
ListAppend({{column}}, 'Hello', '/') would
return the Hola/Bonjour/Salve/Hello

ListPrepend ListPrepend({{column}}, value, delimter)

Returns a list with a new value added to the
start of the list.
For example: {{column}} is
Hola,Bonjour,Salve, using the expression
ListPrepend({{column}}, 'Hello', ',') would
return the Hello,Hola,Bonjour,Salve

ListRemoveDuplicates ListRemoveDuplicates({{column}}, delimiter
)

Returns a value where any duplicate values
have been removed from the list. For example
{{column}} is dog,cat,bird,dog,fish,rabbit,
using the expression ListRemoveDuplicates(
{{column}}, ',') would return
dog,cat,bird,fish,rabbit.

ListSort ListSort({{column}}, sortType, sortOrder,
delimiter)

Returns a list where each element has been
sorted. Options for sortType are: numeric and
text. The options for sortOrder are: asc and
desc. To sort a {{column}} whose value is
8,3,9,12,1,5,2 in ascending numerical order the
expression would be ListSort({{column}},
'numeric', 'asc', ',') and the value would be
1,2,3,5,8,9,12

ListLen ListLen({{column}}, delimiter)

Returns the number of elements in a list: This
function will return the number of elements in a
list as delimited by the character specified in
the expression. For example: {{ column }} is
a;b;c;d;e;f using the expression ListLen(
{{column}}, ';') will return 6

PatternFind PatternFind({{column}}, mask, startPos)

Returns a value from the column that matches
the pattern specified in the expression.
If a startPos is supplied, any characters before
the startPos position will be ignored when
matching for patterns.
Using this expression, it is possible to utilise
pattern masks that behave like input masks
used for sanitising user input into forms.
More information on Masks can be found at
https://help.kahootz.com/kb/articles/input-masks

A mask can form a series of characters to represent the characters matched by the pattern. PatternFind will only
return the first match found, so if multiple possible matches are in a column, only the first match will be
returned.

For example: Where {{column}} is abc1 def2 ghi3

The expression patternFind({{column}}, 'AAAN', 1) attempts to match any string that has 3 mandatory letters
followed by a number.
While each element in the column would match the pattern, the value abc1 would be returned from the function.

PatternFindPosition({{column}}, mask, startPos) Returns the start position of a value from the column that
matches the pattern specified in the expression.
If a startPos is supplied any characters before the startPos position will be ignored when matching for patterns.

Writing Code

You can also write code to make decisions, as well as simple expressions.

There is a range of tags and logical operators for this. You can also use variables in your code to store
intermediate values.

When you write code, you must set a variable called calcResult, which will be displayed in the Database cell.

Kahootz Tip: when writing code, there is a maximum character limit of 50,000

Tags
<SET var_name = expression> - Set the variable var_name to the result of calculating expression.

Kahootz Tip: Note that all variable names must begin with the string "var_".

https://help.kahootz.com/kb/articles/input-masks

Conditional Operators - return true or false, used in IF or ELSEIF conditions

The logical operators AND, OR and NOT are supported, returning true or false

 value1 EQ value2 - Test if value1 equals value2 - works on both numbers and text (case insensitive)

 value1 NEQ value2 - Test if value1 is not equal to value2- works on both numbers and text (case insensitive)

 number1 GT number2 - Test if number1 is greater than number2

 number1 GTE number2 - Test if number1 is greater than or equal to number2

 number1 LT number2 - Test if number1 is less than number2

 number1 LTE number2 - Test if number1 is less than or equal to number2

isNumeric(text) - Test if text can be converted to a number - true if it can, false if it can't.
(eg: can be used to check if something is a valid number and explain the error if it can't rather than let the
calculation fail and return blank.)

Using Conditions

<IF condition>
 CODE
 </IF>

Executes CODE if the condition is true. The format of a condition
block starts with <IF condition> and it requires an end marked
</IF> .

<IF condition1>
 CODE1
 <ELSEIF condition2>
 CODE2
 <ELSEIF condition3>
 CODE3
 <ELSE>
 CODE4
 </IF>

This is an example of conditional branching, it executes one of the
CODE blocks depending on which condition is true. If none of the
conditions are true then the CODE following <ELSE> is executed
(CODE4). You can have as many <elseif condition> blocks as you
like, but only one <else>. Again the conditional IF statement must
finish with the end marker </IF> .

Example

<SET var_daysAfterTargetDate = daysAfter({{delivery date}}, {{planned delivery date}})>

<IF var_daysAfterTargetDate EQ "">

<SET calcResult = "Bad date!"><ELSEIF var_daysAfterTargetDate LT 0>

<SET calcResult = "Early"><ELSEIF var_daysAfterTargetDate EQ 0>

<SET calcResult = "On time"><ELSE>

<SET calcResult = "Late"></IF>

Related Content
Evaluated Columns in a Database
How-To use Linked Databases
Linking Databases Together
Database Column Types & Maximum Character Limits
Using a database for time recording

https://help.kahootz.com/en-GB/kb/articles/evaluated-columns-in-a-database
https://help.kahootz.com/en-GB/kb/articles/how-to-use-linked-databases
https://help.kahootz.com/en-GB/kb/articles/linking-databases-together
https://help.kahootz.com/en-GB/kb/articles/database-column-types-maximum-character-limits
https://help.kahootz.com/en-GB/kb/articles/using-a-database-for-time-recording

