Knowledgebase > Functions of Kahootz > Databases > Calculated Columns in a database

Calculated Columns in a database

Peter Jackson - 2024-04-02 - Databases
Calculations

You can set a text, long text, formatted text, number or date column in a Kahootz Database to be a calculated
column instead of a user having to enter values directly.

This means that the values in that column are calculated based on other values in the entry each time it is saved.
For example, adding up a set of other number columns or combining some text and displaying that value within
the calculated column for you.

Your calculation can be a simple expression, such as adding or multiplying values, or it can contain code and
logic.

You can also use a range of operators and functions within your calculation to obtain the required data.
More information about the operators and functions you can use is given below.

If you add or update a calculation on a column, the existing database entries will be updated in the background.
For a Database with many rows, this can take some time; calculations will also be updated when you add or
change an entry.

A calculation column is added after initially creating a database by following these simple steps
below.

1. Open the Database you want to add a calculated column, and under the "Actions" section, select "manage
database" link.

2. Select the column and at the bottom of the page, under "other options" tick the checkbox for calculated as
shown below.

Other Options
Permissions Is this column locked?

s this column calculated from other columns?

Calculate:

3. Add an expression or code and click save; see the screenshot below.

Calculation See the knowledgebase article about calculations for more information

val ({{Mondayj}) + val ({{Tuesday}}) + val ({{Wednesday}}) + val { {{Thursday}}) + val ({{Friday}})

* This would allow the following Database below to add all the hours from each weekday, totalling them into the
last column.

Kahootz Tip: Adding val ({{column}}) ignores any blank columns within your Database.

N T S T) N O
8.5 8.5 85

* Chris Holt 26 Jun 2017 8.5 340 QF
Please see below for more details on formats, expressions & coding.

Basic Format

You can use the value of other columns in your calculation by putting the column name between {{ and }}.
A list of the available column names will be shown on the add / modify column page when you're adding
calculations, and you can click on them to insert them into the calculation.

You can use round brackets () to make sure your calculation is evaluated in the order you expect-so (2 +4)/2

https://help.kahootz.com/en-GB
https://help.kahootz.com/en-GB/kb
https://help.kahootz.com/en-GB/kb/functions-of-kahootz
https://help.kahootz.com/en-GB/kb/databases
https://help.kahootz.com/en-GB/kb/articles/calculated-columns-in-a-database
https://help.kahootz.com/en-GB/kb/databases

will do the addition first, then the division - giving 3.
Normal mathematical precedence will apply without the brackets, 2 + 4 / 2, so it will do 4 / 2 first, then + 2,
giving 4.

You can search and sort on calculated columns.

You can use one calculated column in another calculation. They are evaluated in column order, so if you want to
use one calculation in another, ensure the first one is higher up the column order.

If there is an error from your code due to particular inputs for a row, the column will be set to blank.

Simple Expressions

Examples

Adding two number columns together: {{days on activity 1}} + {{days on activity 2}}
Multiplying two number columns together: {{cost per hour}} * {{total hours}}

Showing one number column as a percentage of another: {{hours spent on activity}} / {{total hours}} *
100

Showing that percentage as a whole number (no decimal places):
int({{hours spent on activity}} / {{total hours}} * 100)

Work out the number of days between two dates: daysBetween({{start date}}, {{end date}})

Numeric operators
You can use the following operators to combine numbers:

Example: To calculate the total

number of days spent on activityl and
Addition numberl + number2 activity2:

{{days on activityl}} +

{{days on activity2}}

Example: To calculate the cost after

. discount:
Subtraction numberl - number2 {{Original cost}} -
{{discount}}
Example: To calculate the total cost of
TR " a number of items:
Multiplication numberl * number2 {{Cost per item}} * {{number
of items}}
Example: To calculate the cost per
A hour:
Division numberl /| number2 {{Total cost}} / {{number of
hours}}
How many times one number can be
Integer division numberl \ number2 divided by another in whole numbers,
ignoring the remainder.
eg:5 / 2 =2.5but5 \ 2 =2
The remainder after dividing one
e . number by another.
Division-remainder numberl mod number2 eg:5 mod 2 = 1 (2%2=4, with 1
remaining)
In all these operators, if a numeric
column/value is blank it'll be treated
Blank column/value val ({{column}}) 85 an error, to treat empty columns as

Use this expression - please refer to
the example/screenshot above.

Number Functions

You can use the following functions to manipulate numbers:

Absolute value

Rounding

Rounding up

Rounding down

Maximum

Minimum

Text Operator

Joining text

Text Functions

Comparing text

Find position

Insert at position

Remove from position

Convert to lower case
Convert to upper case

Reverse

Length of text

abs(number)

round(number)

ceiling(number)

int(number)

max(numberl, number2)

min(numberl, number2)

testl & text2

compare(textl, text2)
compareNoCase(text1, text2)

find(text_to_find, text)
findNoCase(text_to_find, text)

insert(text_to_insert, text, position)

removeChars(text, start_position, num_chars)

lcase(text)
ucase(text)

reverse(text)

len(text)

The absolute value of a number is the
number without a sign, eg: abs(2)
= 2andabs(-2) = 2

Gives the closest whole number,
rounding up or down as nearest.

eg: round(1.1) = 1and
round(1.9) = 2

Halves will be rounded to the nearest
even number to avoid bias

eg: round(1.5) = 2 and
round(2.5) = 2and round(3.5)
=4

Gives the closest whole number,
always rounding up.

eg: ceiling(1.1) = 2and
ceiling(1.9) = 2

Gives the closest whole number,
always rounding down.

eg: int(1.1) = land int(1.9) =
1

Return the maximum of numberl and
number2. Only handles two numbers,
not more.

Return the minimum of numberl and
number2. Only handles two numbers,
not more.

Note that this does not use + which is
for adding numbers. You will also need
to put in spaces explicitly where
wanted.

eg: {{first name}} & " " &
{{surname}}

Performs a case-sensitive or insensitive
comparison of two text columns.

Return a negative number if text1 is less
than text2; returns 0 if text1 is equal to
text2; returns a positive number if text1 is
greater than text2.

Finds the first occurrence of a text_to find
in text. find is case sensitive, findNoCase is
not.

Returns the position of text to find in text;
or 0, if text_to find is not in text

Return text with text to insert inserted into
text after character position. If position=0,
it prefixes text _to_insert to text.
eg:insert(" My ","Hello Friend",5)
returns "Hello My Friend"

Return a text with num_chars removed
starting at position start position.
eg:removeChars("Hello Friend",5,7)
returns "Hello"

Return text converted to lower case.
Return text converted to upper case.

Return text in reverse order.
eg: reverse("kahootz") returns
"ztoohak"

Return the length - how many characters -
are in text. Includes spaces and other
punctuation.

Characters from left left(text, num_chars)

Characters from right right(text, num_chars)

Characters from position mid(text, start_position, num_chars)

replace(text, remove, insert [, scope])

Find and replace replaceNoCase(text, remove, insert [, scope])

Substring until spanExcluding(text, characters_to_exclude)
Substring until not spanIncluding(text, characters_to_include)
Trim spaces trim(text)
Trim leading spaces lItrim(text)
Trim trailing spaces rtrim(text)
Convert to number val(text)

Dates and Times

Return the leftmost num_chars characters of
text. Counting includes spaces and other
punctuation.

Return the rightmost num_chars characters
of text. Counting includes spaces and other
punctuation.

Return num_chars of characters from text
starting at position start_position.eg:
mid("kahootz",3,4) returns "hoot"

Return text with occurrences of

remove replaced by insert. If the scope is
"1" then just the first occurrence is
replaced.

If the scope is "ALL" then all occurrences
are replaced.

(Versions using Regular Expressions for
very advanced use are available - ask
support!)

Return characters from text, from the
beginning until the first character in
characters to exclude. The search is case
sensitive, so if you want to stop at either A
or a, then put both in characters _to_exclude.
eg:
spanExcluding("kahootz.doc",".,/")
returns "kahootz"

Return characters from text, from the
beginning until the first character that is
NOT in characters to include. The search is
case sensitive, so if you want to include both
A and a, then put both in

characters to_include.

eg:

spanIncluding("aardvark", "aeiou")
returns "aa"

Return text with any leading and trailing
spaces removed.

Return text with any spaces at the
beginning removed.

Return text with any spaces at the end
removed.

Return text converted to a number. Handles
decimal places. Text that can't be returned
to a number will cause an error, and thus a
blank calculated column (but see conditional
operator 'isNumeric() in the code section
below)

Date values in the following functions can either be taken from columns (of date, date and time, month and year,
entry creation date / date-time or entry modify date / date-time types) or entered as explicit dates in the format

yyyymmdd - eg 20170401 is 1st April 2017

Time values in the following functions can either be taken from columns (of date and time, time, entry creation
date-time or entry modify date-time types) or entered as explicit times in the format hhmmss

To show a calculated value in a 'date' column the result must be a valid date, but you can use the other result

formats in text or number columns.

Date Functions - returning a number

Day of Week dayOfWeek(date)

Day Of Year dayOfYear(date)
Days in Month daysInMonth(date)

Days In Year daysInYear(date)

Return a number for the
day of the week of date in
the range 1 (Sunday) to 7
(Saturday)

Return a number of the day
of the year, in the range 1
(1st Jan) - 365 (31st Dec -
or 366 in leap year)

Returns the number of days
in the specified month (ie:
28,29, 30 or 31)

Return the number of days
in the specified year (ie:
365 or 366 for leap years)

Return a number for the
appropriate part of the
specified date/time. Year is
returned in four figures
(2017); Month as 1-12; Day
as 1-31; Hour in 24-hour
notation as 0-23; Minute as
0-59
Return the number of days
that date2 is after datel. If
date?2 is before datel, a
Days after daysAfter(datel, date2) negative number is

returned.

If either is not a valid date,

then empty text is returned.

year(date)
month(date)
Parts of a Date / Time day(date)
hour(time)
minute(time)

Return the number of days
between datel and date2. It
doesn't matter which date
Days between daysBetween(datel, date2) is earlier, and will always
return a positive number. If
either is not a valid date,
then empty text is returned.

Return the number of
"units" by which datel is
less than date2. datepart
should be one of the
following strings

"yyyy": Years"q": Quarters
(any 3 month period)"m":
Months"d": Days"ww":
Weeks"h": Hours"n":
MinutesIf date2 is before
datel, a negative number is
returned. If either is not a
valid date, then empty text
is returned.

Date / Time Difference dateDiff(datepart, datel, date2)

Return -1 if datel is earlier
than date2; Return 0 if
datel is the same as date2;
Date / Time Comparison dateCompare(datel, date2) Return 1 if datel is later
than date2; Accurate to the
second if used with date-
times or times.
Uses the date the entry was
last saved or updated of
Current Date now () which can be used in
various calculations, see
below.

For example, you have a database using a "date" column and you want to return the total number of days the
entries have been open/outstanding.

You can use this function to show the elapsed days between the created date and today's date by adding "now ()"
to the calculation, as shown below.

Calculation

daysBetween({{Created Date}}, now())

Created Date P Problem Elapsed Days [|
01.Jan 2019 #1 100 D
01 Feb 2019 #2 69 D
01 Mar 2019 #3 41 D
01 Apr 201% #4 10 D

Kahootz Tip: The example above will not update automatically, therefore, when you view
the database the next day - the values will not have changed.
The calculation for "current date" uses the date of when the calculation was last saved/updated -
(please remember this if you're going to use this value)

Date Functions - returning a date

Add to / Subtract from a date

Create Date

Create Date - Time

dateAdd(datepart, number, date)

createDate(year, month, day)

createDateTime(year, month, day, hour, minute, second)

Comma-Separated Lists

ListFirst

ListLast

ListRest

ListGetAt

ListFind

ListFindNoCase

ListDeleteAt

ListFirst({{column}}, delimiter)

ListLast({{column}}, delimiter)

ListRest({{column}}, delimiter)

ListGetAt({{column}}, pos, delimiter)

ListFind({{column}}, value, delimiter)

If you are unsure of the case of the value use:
ListFindNoCase({{column}}, value, delimiter

)

ListDeleteAt({{column}}, position, delimiter)

Return a new date by adding the
specified number of units to

date. datepart should be one of the
following strings

"yyyy": Years"q": Quarters"m"
Months"d": Days"w": Weekdays
(Mon-Fri, skipping Sat and Sun.
Simple addition, not aware of
public holidays etc)"ww":
Weeks"h": Hours"n": MinutesIf
number is positive you'll get dates
after date, ie: forwards in time.

To go backwards in time use a
negative value for number.

Create a date from three numbers,
eg: CreateDate(2017,2,14)
represents 14th Feb 2017

Create a date-time from six
numbers, eg:
CreateDateTime(2017,2,14,15,5,17)
represents 14th Feb 2017 15:05:17
- just after 3pm

Returns the first element in a list: This function
will return the first element in a list delimited
by the character specified in the expression.
For example: {{ column }} is a,b,c,d,e,f using
the expression ListFirst({{column}},",") will
return a

Returns the last element in a list: This function
will return the last element in a list delimited by
the character specified in the expression.

For example: {{ column }} is a,b,c,d,e,f using
the expression ListLast({{column}},",") will
return

Returns all but the first element from a list: This
function will return the list without the first
element in the list as delimited by the character
specified in the expression.

For example: {{ column }} is a,b,c,d,e,f using
the expression ListRest({{column}},',') will
return b,c,d,e,f

Returns the element in the specified position
from a list: This function will return a single
element from the delimited list at a position
specified in the expression.

For example: {{ column }} is a/b/c/d/e/f using
the expression ListGetAt({{column}}, 3, /")
will return ¢

Returns the index of the list that is matched by
the value supplied. If no match is found, 0 will
be returned. For example {{ column }} is
Orange,Apple,Banana using the expression
ListFind({{ column }}, 'Banana’, ',") will return
3. As ListFind is case sensitive if the expression
were ListFind({{ column }}, 'banana', ','), the
value returned would be 0.

Returns the index of the list that is matched by
the value supplied whilst ignoring the case of
the value and column. If no match is found, 0
will be returned.

For example {{ column }} is
oRaNGe,aPPLe,BaNaNa using the expression
ListFind({{ column }}, 'banana’, ',") will return
3

Returns the list after removing the element
specified with the position value.

For example: {{ column }} is
hop,skip,run,jump, using the expression
ListDeleteAt({{column}}, 3, ',")will
returnhop,skip,jump’

Returns a list with a new value added to the end
of the list.

For example: {{column}} is
Hola/Bonjour/Salve, using the expression
ListAppend({{column}}, 'Hello', '/*) would
return the Hola/Bonjour/Salve/Hello

Returns a list with a new value added to the
start of the list.

For example: {{column}} is
Hola,Bonjour,Salve, using the expression
ListPrepend({{column}}, 'Hello', ',") would
return the Hello,Hola,Bonjour,Salve

ListAppend ListAppend({{column}}, value, delimiter)

ListPrepend ListPrepend({{column}}, value, delimter)

Returns a value where any duplicate values
have been removed from the list. For example
ListRemoveDuplicates({{column}}, delimiter {{column}} is dog,cat bird,dog,fish,rabbit,
) using the expression ListRemoveDuplicates(
{{column}},",") would return
dog,cat,bird,fish,rabbit.

Returns a list where each element has been
sorted. Options for sortType are: numeric and
text. The options for sortOrder are: asc and

ListSort({{column}}, sortType, sortOrder, desc. To sort a {{column}} whose value is

delimiter) 8,3,9,12,1,5,2 in ascending numerical order the
expression would be ListSort({{column}},
‘numeric', 'asc', ',') and the value would be
1,2,3,5,8,9,12

Returns the number of elements in a list: This
function will return the number of elements in a
list as delimited by the character specified in
the expression. For example: {{ column }} is
a;b;c;d;e;f using the expression ListLen(
{{column}}, ;') will return 6

Returns a value from the column that matches
the pattern specified in the expression.

If a startPos is supplied, any characters before
the startPos position will be ignored when
matching for patterns.

Using this expression, it is possible to utilise
pattern masks that behave like input masks
used for sanitising user input into forms.

More information on Masks can be found at

https://help.kahootz.com/kb/articles/input-masks

ListRemoveDuplicates

ListSort

ListLen ListLen({{column}}, delimiter)

PatternFind PatternFind({{column}}, mask, startPos)

A mask can form a series of characters to represent the characters matched by the pattern. PatternFind will only
return the first match found, so if multiple possible matches are in a column, only the first match will be
returned.

For example: Where {{column}} is abcl def2 ghi3

The expression patternFind({{column}}, 'AAAN', 1) attempts to match any string that has 3 mandatory letters
followed by a number.

While each element in the column would match the pattern, the value abcl would be returned from the function.
PatternFindPosition({{column}}, mask, startPos) Returns the start position of a value from the column that

matches the pattern specified in the expression.
If a startPos is supplied any characters before the startPos position will be ignored when matching for patterns.

Writing Code
You can also write code to make decisions, as well as simple expressions.

There is a range of tags and logical operators for this. You can also use variables in your code to store
intermediate values.

When you write code, you must set a variable called calcResult, which will be displayed in the Database cell.

Kahootz Tip: when writing code, there is a maximum character limit of 50,000

Tags

<SET var_name = expression> - Set the variable var name to the result of calculating expression.

Kahootz Tip: Note that all variable names must begin with the string "var ".

https://help.kahootz.com/kb/articles/input-masks

Conditional Operators - return true or false, used in IF or ELSEIF conditions

The logical operators AND, OR and NOT are supported, returning true or false

valuel EQ value2 - Test if valuel equals value2 - works on both numbers and text (case insensitive)

valuel NEQ value2 - Test if valuel is not equal to value2- works on both numbers and text (case insensitive)
numberl GT number2 - Test if numberl is greater than number2

numberl GTE number2 - Test if numberl is greater than or equal to number2

numberl LT number2 - Test if numberl is less than number2

numberl LTE number2 - Test if numberl is less than or equal to number2

isNumeric(text) - Test if text can be converted to a number - true if it can, false if it can't.

(eg: can be used to check if something is a valid number and explain the error if it can't rather than let the
calculation fail and return blank.)

Using Conditions

<IF condition> Executes CODE if the condition is true. The format of a condition
CODE block starts with <IF condition> and it requires an end marked
</IF> </IF>.
<IF condition1>
CODE1 - -, o
. This is an example of conditional branching, it executes one of the
<ELSEIF condition2> . . A
CODE2 CODE blocks depending on which condition is true. If none of the
. conditions are true then the CODE following <ELSE> is executed
<ELSEIF condition3> . .
(CODE4). You can have as many <elseif condition> blocks as you
CODE3 . : s
like, but only one <else>. Again the conditional IF statement must
<ELSE> finish with the end marker </IF>
CODE4 .
</IF>
Example

<SET var daysAfterTargetDate = daysAfter({{delivery date}}, {{planned delivery date}})>
<IF var daysAfterTargetDate EQ "">

<SET calcResult = "Bad date!"><ELSEIF var daysAfterTargetDate LT 0>

<SET calcResult = "Early"><ELSEIF var daysAfterTargetDate EQ 0>

<SET calcResult = "On time"><ELSE>

<SET calcResult = "Late"></IF>

Related Content

Evaluated Columns in a Database

How-To use Linked Databases

Linking Databases Together

Database Column Types & Maximum Character Limits
Using a database for time recording

https://help.kahootz.com/en-GB/kb/articles/evaluated-columns-in-a-database
https://help.kahootz.com/en-GB/kb/articles/how-to-use-linked-databases
https://help.kahootz.com/en-GB/kb/articles/linking-databases-together
https://help.kahootz.com/en-GB/kb/articles/database-column-types-maximum-character-limits
https://help.kahootz.com/en-GB/kb/articles/using-a-database-for-time-recording

