
Knowledgebase > Functions of Kahootz > Databases > Calculated Columns in a database

Calculated Columns in a database
Software Support - 2023-12-14 - Databases

Calculations
You can set a text, long text, formatted text, number or date column in a Kahootz Database
to be a calculated column instead of a user having to enter values directly.
This means that the values in that column are calculated based on other values in the entry
each time it is saved.
For example, adding up a set of other number columns or combining some text and
displaying that value within the calculated column for you.

Your calculation can be a simple expression, such as adding or multiplying values, or it can
contain code and logic.
You can also use a range of operators and functions within your calculation to obtain the
required data.
More information about the operators and functions you can use is given below.

If you add or update a calculation on a column, the existing database entries will be
updated in the background.
For a Database with many rows, this can take some time; calculations will also be updated
when you add or change an entry.

A calculation column is added after initially creating a database by following
these simple steps below.

1. Open the Database you want to add a calculated column, and under the "Actions"
section, select "manage database" link.
2. Select the column and at the bottom of the page, under "other options" tick the checkbox
for calculated as shown below.

3. Add an expression or code and click save; see the screenshot below.

* This would allow the following Database below to add all the hours from each weekday,
totalling them into the last column.

Kahootz Tip: Adding val ({{column}}) ignores any blank columns within

https://help.kahootz.com/
https://help.kahootz.com/kb
https://help.kahootz.com/kb/functions-of-kahootz
https://help.kahootz.com/kb/databases
https://help.kahootz.com/kb/articles/calculated-columns-in-a-database
https://help.kahootz.com/kb/databases

your Database.

Please see below for more details on formats, expressions & coding.

Basic Format
You can use the value of other columns in your calculation by putting the column name
between {{ and }}.
A list of the available column names will be shown on the add / modify column page when
you're adding calculations, and you can click on them to insert them into the calculation.

You can use round brackets () to make sure your calculation is evaluated in the order you
expect - so (2 + 4) / 2 will do the addition first, then the division - giving 3.
Normal mathematical precedence will apply without the brackets, 2 + 4 / 2, so it will do 4 /
2 first, then + 2, giving 4.

You can search and sort on calculated columns.

You can use one calculated column in another calculation. They are evaluated in column
order, so if you want to use one calculation in another, ensure the first one is higher up the
column order.

If there is an error from your code due to particular inputs for a row, the column will be set
to blank.

Simple Expressions
Examples

Adding two number columns together: {{days on activity 1}} + {{days on
activity 2}}

Multiplying two number columns together: {{cost per hour}} * {{total hours}}

Showing one number column as a percentage of another: {{hours spent on
activity}} / {{total hours}} * 100

Showing that percentage as a whole number (no decimal places):
int({{hours spent on activity}} / {{total hours}} * 100)

Work out the number of days between two dates: daysBetween({{start date}},
{{end date}})

Numeric operators
You can use the following operators to combine numbers:

Addition

number1 + number2 Example: To calculate the
total number of days spent
on activity1 and activity2:
{{days on activity1}}
+ {{days on
activity2}}

Subtraction
number1 - number2 Example: To calculate the

cost after discount:
{{Original cost}} -
{{discount}}

Multiplication

number1 * number2 Example: To calculate the
total cost of a number of
items:
{{Cost per item}} *
{{number of items}}

Division
number1 / number2 Example: To calculate the

cost per hour:
{{Total cost}} /
{{number of hours}}

Integer division

number1 \ number2 How many times one
number can be divided by
another in whole numbers,
ignoring the remainder.
eg:5 / 2 = 2.5 but 5 \
2 = 2

Division-remainder

number1 mod number2 The remainder after
dividing one number by
another.
eg: 5 mod 2 = 1
(2*2=4, with 1
remaining)

Blank column/value

val ({{column}}) In all these operators, if a
numeric column/value is
blank it'll be treated as an
error, to treat empty
columns as 0.
Use this expression - please
refer to the
example/screenshot above.

Number Functions
You can use the following functions to manipulate numbers:

Absolute value
abs(number) The absolute value of a

number is the number
without a sign, eg: abs(2)
= 2 and abs(-2) = 2

Rounding

round(number) Gives the closest whole
number, rounding up or
down as nearest.
eg: round(1.1) = 1 and
round(1.9) = 2
Halves will be rounded to the
nearest even number to
avoid bias
eg: round(1.5) = 2 and
round(2.5) = 2 and
round(3.5) = 4

Rounding up
ceiling(number) Gives the closest whole

number, always rounding up.
eg: ceiling(1.1) = 2 and
ceiling(1.9) = 2

Rounding down

int(number) Gives the closest whole
number, always rounding
down.
eg: int(1.1) = 1 and
int(1.9) = 1

Maximum
max(number1, number2) Return the maximum of

number1 and number2. Only
handles two numbers, not
more.

Minimum
min(number1, number2) Return the minimum of

number1 and number2. Only
handles two numbers, not
more.

Text Operator

Joining text

test1 & text2 Note that this does not use
+ which is for adding
numbers. You will also need
to put in spaces explicitly
where wanted.
eg: {{first name}} & "
" & {{surname}}

Text Functions

Comparing text

compare(text1, text2)
compareNoCase(text1, text2)

Performs a case-sensitive or insensitive
comparison of two text columns.
Return a negative number if text1 is less
than text2; returns 0 if text1 is equal to
text2; returns a positive number if text1 is
greater than text2.

Find position
find(text_to_find, text)
findNoCase(text_to_find, text)

Finds the first occurrence of a text_to_find in
text. find is case sensitive, findNoCase is not.
Returns the position of text_to_find in text;
or 0, if text_to_find is not in text

Insert at position

insert(text_to_insert, text, position) Return text with text_to_insert inserted into
text after character position. If position=0, it
prefixes text_to_insert to text.
eg:insert(" My ","Hello Friend",5)
returns "Hello My Friend"

Remove from position
removeChars(text, start_position,
num_chars)

Return a text with num_chars removed
starting at position start_position.
eg:removeChars("Hello Friend",5,7)
returns "Hello"

Convert to lower case lcase(text) Return text converted to lower case.

Convert to upper case ucase(text) Return text converted to upper case.

Reverse
reverse(text) Return text in reverse order.

eg: reverse("kahootz") returns
"ztoohak"

Length of text
len(text) Return the length - how many characters -

are in text. Includes spaces and other
punctuation.

Characters from left
left(text, num_chars) Return the leftmost num_chars characters of

text. Counting includes spaces and other
punctuation.

Characters from right
right(text, num_chars) Return the rightmost num_chars characters

of text. Counting includes spaces and other
punctuation.

Characters from
position

mid(text, start_position, num_chars) Return num_chars of characters from text
starting at position start_position.eg:
mid("kahootz",3,4) returns "hoot"

Find and replace

replace(text, remove, insert [, scope])
replaceNoCase(text, remove, insert [,
scope])

Return text with occurrences of
remove replaced by insert. If the scope is "1"
then just the first occurrence is replaced.
If the scope is "ALL" then all occurrences are
replaced.
(Versions using Regular Expressions for very
advanced use are available - ask support!)

Substring until

spanExcluding(text,
characters_to_exclude)

Return characters from text, from the
beginning until the first character in
characters_to_exclude. The search is case
sensitive, so if you want to stop at either A
or a, then put both in characters_to_exclude.
eg:
spanExcluding("kahootz.doc",".,/")
returns "kahootz"

Substring until not

spanIncluding(text, characters_to_include
)

Return characters from text, from the
beginning until the first character that is NOT
in characters_to_include. The search is case
sensitive, so if you want to include both A
and a, then put both in
characters_to_include.
eg:
spanIncluding("aardvark","aeiou")
returns "aa"

Trim spaces trim(text) Return text with any leading and trailing
spaces removed.

Trim leading spaces ltrim(text) Return text with any spaces at the beginning
removed.

Trim trailing spaces rtrim(text) Return text with any spaces at the end
removed.

Convert to number

val(text) Return text converted to a number. Handles
decimal places. Text that can't be returned
to a number will cause an error, and thus a
blank calculated column (but see conditional
operator 'isNumeric() in the code section
below)

Dates and Times
Date values in the following functions can either be taken from columns (of date, date and

time, month and year, entry creation date / date-time or entry modify date / date-time
types) or entered as explicit dates in the format yyyymmdd - eg 20170401 is 1st April 2017

Time values in the following functions can either be taken from columns (of date and time,
time, entry creation date-time or entry modify date-time types) or entered as explicit times
in the format hhmmss

To show a calculated value in a 'date' column the result must be a valid date, but you can
use the other result formats in text or number columns.

Date Functions - returning a number

Day of Week

dayOfWeek(date) Return a number
for the day of the
week of date in the
range 1 (Sunday)
to 7 (Saturday)

Day Of Year

dayOfYear(date) Return a number
of the day of the
year, in the range
1 (1st Jan) - 365
 (31st Dec - or 366
in leap year)

Days in Month

daysInMonth(date) Returns the
number of days in
the specified
month (ie: 28, 29,
30 or 31)

Days In Year

daysInYear(date) Return the number
of days in the
specified year (ie:
365 or 366 for leap
years)

Parts of a Date / Time

year(date)
month(date)
day(date)
hour(time)
minute(time)

Return a number
for the appropriate
part of the
specified
date/time. Year is
returned in four
figures (2017);
Month as 1-12; Day
as 1-31; Hour in
24-hour notation
as 0-23; Minute as
0-59

Days after

daysAfter(date1, date2) Return the number
of days that date2
is after date1. If
date2 is before
date1, a negative
number is
returned.
If either is not a
valid date, then
empty text is
returned.

Days between

daysBetween(date1, date2) Return the number
of days between
date1 and date2. It
doesn't matter
which date is
earlier, and will
always return a
positive number. If
either is not a valid
date, then empty
text is returned.

Date / Time Difference

dateDiff(datepart, date1, date2) Return the number
of "units" by which
date1 is less than
date2. datepart
should be one of
the following
strings
"yyyy": Years"q":
Quarters (any 3
month period)"m":
Months"d":
Days"ww":
Weeks"h":
Hours"n": MinutesIf
date2 is before
date1, a negative
number is
returned. If either
is not a valid date,
then empty text is
returned.

Date / Time Comparison

dateCompare(date1, date2) Return -1 if date1
is earlier than
date2; Return 0 if
date1 is the same
as date2; Return 1
if date1 is later
than date2;
Accurate to the
second if used with
date-times or
times.

Current Date now () Uses the date the
entry was last
saved or updated
of which can be
used in various
calculations, see
below.

For example, you have a database using a "date" column and you want to return the total
number of days the entries have been open/outstanding.
You can use this function to show the elapsed days between the created date and today's
date by adding "now ()" to the calculation, as shown below.

Kahootz Tip: The example above will not update automatically,
therefore, when you view the database the next day - the values will not have
changed.
The calculation for "current date" uses the date of when the calculation was
last saved/updated - (please remember this if you're going to use this value)

Date Functions - returning a date

Add to / Subtract from a date

dateAdd(datepart, number, date) Return a new date by adding the
specified number of units to
date. datepart should be one of the
following strings
"yyyy": Years"q": Quarters"m":
Months"d": Days"w": Weekdays
(Mon-Fri, skipping Sat and Sun.
Simple addition, not aware of public
holidays etc)"ww": Weeks"h":
Hours"n": MinutesIf number is
positive you'll get dates after date,
ie: forwards in time.
To go backwards in time use a
negative value for number.

Create Date
createDate(year, month, day) Create a date from three numbers,

eg: CreateDate(2017,2,14)
represents 14th Feb 2017

Create Date - Time

createDateTime(year, month, day, hour, minute,
second)

Create a date-time from six
numbers, eg:
CreateDateTime(2017,2,14,15,5,17)
represents 14th Feb 2017 15:05:17
- just after 3pm

Comma-Separated Lists
ListFirst, ListLast, ListRest, ListGetAt, ListLen, ListFind, ListFindNoCase, ListDeleteAt,
ListAppend, ListPrepend, ListRemoveDuplicates, ListSort

ListFirst({{column}}, delimiter) Returns the first element in a list: This function will return
the first element in a list delimited by the character specified in the expression. For
example: {{ column }} is a,b,c,d,e,f using the expression ListFirst({{column}}, ',') will
return a

ListLast({{column}}, delimiter) Returns the last element in a list: This function will return
the last element in a list delimited by the character specified in the expression. For
example: {{ column }} is a,b,c,d,e,f using the expression ListLast({{column}}, ',') will
return f

ListRest({{column}}, delimiter) Returns all but the first element from a list: This function
will return the list without the first element in the list as delimited by the character specified
in the expression. For example: {{ column }} is a,b,c,d,e,f using the expression ListRest(
{{column}}, ',') will return b,c,d,e,f

ListGetAt({{column}}, pos, delimiter) Returns the element in the specified position from a
list: This function will return a single element from the delimited list at a position specified
in the expression. For example: {{ column }} is a/b/c/d/e/f using the expression ListGetAt(
{{column}}, 3, '/') will return c

ListFind({{column}}, value, delimiter) Returns the index of the list that is matched by the
value supplied. If no match is found, 0 will be returned. For example {{ column }} is
Orange,Apple,Banana using the expression ListFind({{ column }}, 'Banana', ',') will return
3. As ListFind is case sensitive if the expression were ListFind({{ column }}, 'banana', ','),
the value returned would be 0.

If you are unsure of the case of the value use:

ListFindNoCase({{column}}, value, delimiter) Returns the index of the list that is matched
by the value supplied whilst ignoring the case of the value and column. If no match is found,
0 will be returned. For example {{ column }} is oRaNGe,aPPLe,BaNaNa using the
expression ListFind({{ column }}, 'banana', ',') will return 3

ListDeleteAt({{column}}, position, delimiter) Returns the list after removing the element
specified with the position value. For example: {{ column }} is hop,skip,run,jump, using the
expression ListDeleteAt({{column}}, 3, ',')will returnhop,skip,jump`

ListAppend({{column}}, value, delimiter) Returns a list with a new value added to the end
of the list. For example: {{column}} is Hola/Bonjour/Salve, using the expression
ListAppend({{column}}, 'Hello', '/') would return the Hola/Bonjour/Salve/Hello

ListPrepend({{column}}, value, delimter) Returns a list with a new value added to the
start of the list. For example: {{column}} is Hola,Bonjour,Salve, using the expression

ListPrepend({{column}}, 'Hello', ',') would return the Hello,Hola,Bonjour,Salve

ListRemoveDuplicates({{column}}, delimiter) Returns a value where any duplicate values
have been removed from the list. For example {{column}} is dog,cat,bird,dog,fish,rabbit,
using the expression ListRemoveDuplicates({{column}}, ',') would return
dog,cat,bird,fish,rabbit.

ListSort({{column}}, sortType, sortOrder, delimiter) Returns a list where each element
has been sorted. Options for sortType are: numeric and text. The options for sortOrder are:
asc and desc. To sort a {{column}} whose value is 8,3,9,12,1,5,2 in ascending numerical
order the expression would be ListSort({{column}}, 'numeric', 'asc', ',') and the value
would be 1,2,3,5,8,9,12

ListLen({{column}}, delimiter) Returns the number of elements in a list: This function will
return the number of elements in a list as delimited by the character specified in the
expression. For example: {{ column }} is a;b;c;d;e;f using the expression ListLen(
{{column}}, ';') will return 6

PatternFind({{column}}, mask, startPos) Returns a value from the column that matches
the pattern specified in the expression. If a startPos is supplied, any characters before the
startPos position will be ignored when matching for patterns.

Using this expression, it is possible to utilise pattern masks that behave like input masks
used for sanitising user input into forms. More information on Masks can be found at
https://help.kahootz.com/kb/articles/input-masks

A mask can take the form of a series of characters to represent the characters matched by
the pattern. PatternFind will only return the first match found, so if multiple possible
matches are in a column, only the first match will be returned.

For example: Where {{column}} is abc1 def2 ghi3

The expression patternFind({{column}}, 'AAAN', 1) attempts to match any string that has
3 mandatory letters followed by a number. While each element in the column would match
the pattern, the value abc1 would be returned from the function.

PatternFindPosition({{column}}, mask, startPos) Returns the start position of a value from
the column that matches the pattern specified in the expression. If a startPos is supplied
any characters before the startPos position will be ignored when matching for patterns.

Writing Code
As well as simple expressions, you can write code to make decisions.

There is a range of tags and logical operators for this. You can also use variables in your

https://help.kahootz.com/kb/articles/input-masks

code to store intermediate values.

When you write code, you must set a variable called calcResult, which will be displayed in
the Database cell.

Kahootz Tip: when writing code, there is a maximum character limit of
50,000

Tags
<SET var_name = expression> - Set the variable var_name to the result of calculating
expression.

Kahootz Tip: Note that all variable names must begin with the string "var_".

Conditional Operators - return true or false, used in IF or ELSEIF
conditions
The logical operators AND, OR and NOT are supported, returning true or false

 value1 EQ value2 - Test if value1 equals value2 - works on both numbers and text (case
insensitive)

 value1 NEQ value2 - Test if value1 is not equal to value2- works on both numbers and
text (case insensitive)

 number1 GT number2 - Test if number1 is greater than number2

 number1 GTE number2 - Test if number1 is greater than or equal to number2

 number1 LT number2 - Test if number1 is less than number2

 number1 LTE number2 - Test if number1 is less than or equal to number2

isNumeric(text) - Test if text can be converted to a number - true if it can, false if it
can't.
(eg: can be used to check if something is a valid number and explain the error if it can't
rather than let the calculation fail and return blank.)

Using Conditions

<IF condition>
 CODE
 </IF>

Executes CODE if the condition is true. The format
of a condition block starts with <IF condition> and
it requires an end marked </IF> .

<IF condition1>
 CODE1
 <ELSEIF condition2>
 CODE2
 <ELSEIF condition3>
 CODE3
 <ELSE>
 CODE4
 </IF>

This is an example of conditional branching, it
executes one of the CODE blocks depending on
which condition is true. If none of the conditions are
true then the CODE following <ELSE> is executed
(CODE4). You can have as many <elseif condition>
blocks as you like, but only one <else>. Again the
conditional IF statement must finish with the end
marker </IF> .

Example
<SET var_daysAfterTargetDate = daysAfter({{delivery date}},
{{planned delivery date}})>

<IF var_daysAfterTargetDate EQ "">

<SET calcResult = "Bad date!">
<ELSEIF var_daysAfterTargetDate LT 0>

<SET calcResult = "Early">
<ELSEIF var_daysAfterTargetDate EQ 0>

<SET calcResult = "On time">
<ELSE>

<SET calcResult = "Late">
</IF>

Related Content

How-To use Linked Databases
Linking Databases Together
Database Column Types & Maximum Character Limits
Using a database for time recording

https://help.kahootz.com/kb/articles/how-to-use-linked-databases
https://help.kahootz.com/kb/articles/linking-databases-together
https://help.kahootz.com/kb/articles/database-column-types-maximum-character-limits
https://help.kahootz.com/kb/articles/using-a-database-for-time-recording

